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Overview

1. Studying Language Evolution in the Lab:
Overview and Demonstration
Iterated learning: What’s different in children?
2. Negotiating Meaning:
Communicative Constraints in Children and Adults
Can children invent a novel communication system?

3. Transmitting Symbolic Signals:
Learnability Constraints in Children and Adults
Who are the agents of language change?

4. Accommodating the Learner:
The Role of Teaching in Language Transmission
How do experts transmit linguistic knowledge?



Overview

1. Studying Language Evolution in the Lab:
Overview and Demonstration

Iterated learning: What’s different in children?
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Language as Shaped by the Brain

Morten H. Christiansen
Department of Psychology
Cornell University
Ithaca, NY 14853
email: mhc27@cornell.edu

Nick Chater
Department of Psychology
University College London

London, WCI1E 6BT
email: n.chater@ucl.ac.uk

and

Santa Fe Institute
1399 Hyde Park Road
Santa Fe, NM 87501

Abstract

It is widely assumed that human learning and the structure of human languages are intimately related.
This relationship is frequently suggested to be rooted in a language-specific biological endowment,
which encodes universal, but arbitrary, principles of language structure (a universal grammar or UG).
How might such a UG have evolved? We argue that UG could not have arisen either by biological
adaptation or non-adaptationist genetic processes. The resulting puzzle concerning the origin of UG we
call the logical problem of language evolution. Because the processes of language change are much
more rapid than processes of genetic change, language constitutes a “moving target” both over time
and across different human populations, and hence cannot provide a stable environment to which UG
genes could have adapted. We conclude that a biologically determined UG is not evolutionarily viable.
Instead, the original motivation for UG—the mesh between learners and languages—arises because

language has been shaped to fit the human brain, rather than vice versa. Following Darwin, we view

language itself as a complex and interdependent “organism.” which evolves under selectional pressures
from human learning and processing mechanisms. That is, languages are themselves undergoing severe

selectional pressure from each generation of language users and learners. This suggests that apparently
arbitrary aspects of linguistic structure may result from general learning and processing biases,
independent of language. We illustrate how this framework can integrate evidence from different
literatures and methodologies to explain core linguistic phenomena, including binding constraints,

word order universals, and diachronic language change. Christiansen & Chater (2008)
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Simulating Cultural Evolution Through
Iterated Learning

Iterated learning is an
experimental paradigm that
allows us to study aspects
of language transmission in
the lab.
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Demo Instructions

Assemble into X diffusion chains of Y
‘generations’.

Get piece of paper and pen; mark paper
with chain and generation number & turn
it over.

Get stopwatch on your smartphone ready.

Receive paper with target drawing; look at
it for 10 sec. Then put it away!

Draw what you remember seeing on the
paper and hand your drawing to the next
person (‘generation’) in your chain.

Hold on to your target drawing until |
collect it.
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Simulating Cultural Evolution Through
Iterated Learning




1. How is the outcome of iterated learning
experiments shaped by constraints imposed
by different learners, e.g. children?

2. What can these experiments tell us about the
potential role of different learners in language
evolution and language change?



Bartlett (1932)



And there are more....

N LA
Roo 0@ § 8
e ® 48

Schema =

accepted
conventional
representation.

Bartlett (1932)



o 5 R 5 -

Tamariz & Kirby (2014)



|||||||||

ccccccc



More Examples:
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Cornish, Smith & Kirby (2013)



10 seconds 000000000000

Kempe, Gauvrit & Forsyth (2015)
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How to Measure Structure?
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How to Measure Structure?

Perimetric Complexity:
(outer perimeter + inner perimeter)?/ink area 5@ — )
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PERIMETRIC COMPLEXITY
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How to Measure Structure?
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How to Measure Structure?
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How to Measure Structure?

Algorithmic Complexity

« =length of the algorithm required to (re)produce a given
stimulus/signal

* depends on underlying representation of the production/
generation mechanism

« proxy of structure (inverse algorithmic complexity):
compression (e.g. zip) = looking for amount of redundancy
in the stimulus/signal
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Where Does Structure Come From?
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Where Does Structure Come From?

observed schemas:
« T-junctions

i - ;' T '-_:'. + lines
_ . * ZIg-Zags
| i rk * Crosses
- r - triangles
’ - E ::rl * squares
P - * dotted lines
* corners
patters produced in final generation (G10) « dogs

Kempe, Gauvrit & Forsyth (2015)



Where Does Structure Come From?

“It’s the priors,
stupid!”
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You just returned from a summer holiday. Against your better knowledge,
you spent a lot of time roasting in the sun. Upon your return you notice a
small brown speck on your arm. Worried, you see you doctor who requests a
test. While you are waiting, your doctor gives you the following information:



The probability that the test comes back positive if someone has
cancer:

p(test+|cancer) = .9 hit rate

The probability that the test comes back positive if someone does not
have cancer:

p(test+|no cancer) = .2 false alarm rate

The probability that someone has this type of cancer:
p(cancer) = .01 base rate

Your test came back positive.
What is the probability that you have cancer?



Belief Updating Based on Evidence:
Bayes’ Theorem

likelihood prior (aka base rate)

p(D[H) x p(H)

p(HID) =

\ p(D)

posterior

H = your hypothesis, theory, assumption, belief
D = the data



Belief Updating Based on Evidence:
Bayes’ Theorem

The extended form: partitioning up p(D) base rate

p(D[H) x p(H)

p(DI|H) x p(H) + p(DI;H) X p(7H)

hit rate false arza\rm rate

H = your hypothesis, theory, assumption, belief
D = the data

p(HID) =




Applying Bayes’ Theorem:

p(cancerltest+) =

p(test+|cancer) x p(cancer)

p(test+|cancer) x p(cancer) + p(test+|no cancer) x p(no cancer)

0.9 x0.01 0.009

=0.043
0.9x0.01+ 0.2x0.99 0.009 + 0.198

p=0.043 =4.3%




Reproduction / Learning
as Bayesian Inference

Task: Extracting and storing information from a
noisy signal.
How? Inference of what hypothesis of the state of

the world (H) to extract and store based on the
perceived data (D) prior

p(DJH) * pHE"

p(Dall)
Reconstruction = compromise between noise in

the data and uncertainty in the prior distribution.

p(H|D,) =




Bayesian Inference
prior: p of H in general = best

likelihood: probability understood as how much
of observing a set of evidence learners need to adopt a
data if this particular particular H (abstract computational-
hypothesis H holds true level approach agnostic to the nature
and contentw
p(DIH) x p(H)
p(HID) =

| e

posterior: probability of data

ﬁro!oabll’::‘y (::If tthe averaged over all possible
given the data Hs

H = hypothesis about how to generate the data
D = data Griffiths & Kalish (2007)




mmmmm
« Observers arrive at a posterior probability of a hypothesis given the

data they have observed which -- according to Bayes’ Rule is --
dependent on the prior.



Iterated Reproduction
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Observers arrive at a posterior probability of a hypothesis given the
data they have observed which -- according to Bayes’ Rule is --
dependent on the prior.

In iterated reproduction, observers then sample (i.e. probability-match)
from the posterior probability distribution to generate the output for the
next observer.

Iew H, %vductlon H, H, H,
® @ ® ®
e R



Iterated Reproduction as
Markov Chain

OO0 —0)—

p (DyDy4) = p(DyH) x p(H|Dy4)

Reproduction of a stimulus D, depending on the previous
stimulus D, , is based on a combination of the prior and the
previous reconstruction.

Griffiths & Kalish (2007)



Observers arrive at a posterior probability of a hypothesis given the

data they have observed which -- according to Bayes’ Rule is --
dependent on the prior.

Once observers have obtained the posterior probability, they sample
(i.e. probability-match) from the posterior probability distribution to
generate their output for the next observer.

This sampling draws from the combined distribution of the probability
of the current output state given the prior and the posterior determined
from the previous input state.

As the stationary distribution of the Markov chain is the prior (for proof
see G&K, 2007), iteration of this process over time leads to
convergence of the generated state to the prior.

Thus, the prior is exerting its influence on every single iteration
while the data seen, or the hypotheses generated, by each
observer are only one small piece of information.



Iterated Reconstruction / Learning
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Amplification of Initial Biases
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Transmission Fidelity / Learnability

s

Similarity

As structure increases, learnability improves.
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Summary: Adults

Cultural transmission can be studied experimentally
as a process of iterated reproduction/learning.

Reproduction is biased: In experiments, participants

show prior biases in favour of more compressibility/
structure.

If reproduction and learning are viewed as Bayesian
inference then iteration leads to convergence to
these priors. As a result, weak biases get amplified.

As structure increases learnability increases too.
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Figure 11.24 The evolution of hominin life history during the first 20 years of life.
Abbreviation of the pongid and hominin taxa are P/A, Pan, Australopithecus afarensis, Aa,
Australopithecus africanus, Hh, Homo habilis; Hel, early Homo erectus; He2, late Homo
erectus; Hs, Homo sapiens. Source: Bogin (1999).

Bogin & Smith (2000)



Children: What’s Different?

* Do children have biases / priors? III
— weaker biases? - -
— stronger biases?
— different biases?

 Effects of lower cognitive capacity
— on learning?
— on reproduction?

H1 H2 H3 H4 H5 H6 H7




Possible Differences in Children’s Priors

H1 H2 H3 H4 H5 H6 H7
flat priors?

adults

H1 H2 H3 H4 H5 H6 H7

children

H1 H2 H3 H4 H5 H6 H7 H8 H9
more hypotheses?

H1 H2 H3 H4 H5 H6 H7
fewer hypotheses?



Differences in Children’s Learning

Sampling from the distribution of hypotheses:

v

-IIIIIII- -IIIIIII-
H1 H2 H3 H4 H5 H6 H7 H8 H9 H1 H2 H3 H4 H5 H6 H7 H8 H9
broad, “high temperature” search narrow, “low temperature” search

Gopnik et al. (2017)



Hypothesis Search Across the Lifespan

‘Disjunctive’ Training Trials

n E
A B C AB AC B(

‘Conjunctive’ Training Trials
A B i AB A B(C
Test Tnals

B8RB800
D D D E DF DEF DF

Fig. 1. Schematic of the procedure for Exp. 1. The yellow rectangle repre-
sents the machine’s activation. “Disjunctive” training provides evidence of
the more common, disjunctive hypothesis. “Conjunctive” training provides
support for the less common conjunctive hypothesis. “Test” trials presented
ambiguous evidence about the “D” object.

How likely are Ps to try object combinations?

Proportion of Multiple Item Interventions

1.0

- Conjunctive
’_3‘ —— Baseline
8 2 Disjunctive
2 ©
=3
3 3 :
=2 %
g
2 3
3) K
2 o~ "
1) o ) g
a | T .-
z T— —
- o~ - -
4Y0Os 6 YOs 9-11YO0s 12-14 YOs Adults

Fig. 3. Proportion of participants choosing either single or multiple items
for intervention choice with SEs.

Gopnik et al. (2017)



Hypothesis Search Across the Lifespan

How likely are Ps to try blame the social context rather than a protagonist’s
traits (i.e. not committing the ‘Fundamental Attribution Error?

Average Situation Attribution Score

: =
Adolescents revise o
social attributions! :

O i

; 4 YOs 6 YOs 9-11Y0s 12-14YOs Adults

Fig.4. Average attribution scores by age group and condition with SEs. YO,
year old.

Gopnik et al. (2017)



Iterated Reproduction in Children
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Kempe, Gauvrit & Forsyth (2015)
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Transmission Accuracy

transmission accuracy

Combinatorial Structure

807

2

N
CF

20

% stickers in correct cell 400+
350
Z
£
g' 300
S
o
€
= 2507
5
=)
(4]
200
——adults
——children
150

algorithmic complexity

—adults
——children

generation

generation

Structure emerges more readily in children.

Kempe, Gauvrit & Forsyth (2015)
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Final patterns (generation 10)

fewer patterns?
simpler patterns?
different patterns?



adults children

T-junction
line
Zig-zag
Cross
triangle
square
dotted line
corner
dog

?°07?

?7?7?

line

Cross

square
corner
diagonal lines

rectangles

blobs
7?7
7?7

fewer patterns v/
simpler patterns v/
different patterns?



A Preliminary Hypothesis

adults

H1 H2 H3 H4 H5 H6 H7
children

'y

H1 H2 H3 H4 H5 H6 H7

‘Disjunctive’ Training Trials
A B « AB AC B(
“Conjunctive’ Training Trials
A B C AB AC BC
Test Trials
D D D E DF DEF DF

Perhaps children
sample more widely, but
from a smaller set of
initial hypotheses due to
limited knowledge?



Summary: Children

The extended childhood in humans provides
opportunities for social learning.

Children’s learning may differ in terms of their initial

hypotheses space and/or in terms of how it is affected
by limited cognitive capacity.

Children may have a different hypothesis space.

Children may differ in how broadly they sample from
their hypothesis space.

Preliminary findings from iterated reproduction suggest
that children have fewer/simpler hypotheses.

Hypothesis: Children sample more broadly from a
smaller set of initial hypotheses.
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slides at: https://language.abertay.ac.uk/SSoL2018/
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